Cori-Zyklus

Aus Organspende-Wiki
Wechseln zu: Navigation, Suche

Der Cori-Zyklus (benannt nach seinen Entdeckern, Gerty Cori (1896-1957) und Carl Cori (1896-1984)) beschreibt den Kreislauf von Glucose und deren Abbauprodukten zwischen Skelettmuskel und Leber. Die erweiterte Beschreibung bezieht die Stoffwechselwege der Gluconeogenese, der Glutaminsäure (Glu), Teile des Citratzyklus und den Harnstoffzyklus mit ein.

Der Skelettmuskel ist auch unter aeroben Bedingungen nicht in der Lage, Lactat wieder in Glucose umzuwandeln: es fehlen ihm die Enzyme der Gluconeogenese. Aus diesem Grunde besteht eine Zirkulation von Metaboliten zwischen Skelettmuskel und Leber - letztere verfügt über das entsprechende Enzym-Repertoire. In seiner ursprünglichen Form wurde dieser Organkreislauf als "Cori-Zyklus" bezeichnet. Eine erweiterte Form desselben, der "Glucose-Alanin-Zyklus" ist wohl von größerer Bedeutung, da er gleichzeitig einer Ammoniak-Vergiftung des Muskels vorbeugt, indem er dieses dem Entgiftungsapparat der Leber (dem Harnstoffzyklus) zuführt.

Bei Muskelbetätigung entsteht schnell ein gewisser Sauerstoffmangel im Skelettmuskel. Unter diesen eher anaeroben Bedingungen verlangsamt sich die Atmungskette im Mitochondrium und Energie wird hauptsächlich durch die Glycolyse erzeugt. Andererseits wird Pyruvat jedoch weniger über den Citratzyklus abgebaut. Stattdessen reagiert Pyruvat anaerob zu Milchsäure. Dabei wird NAD+ für die Glycolyse regeneriert. Milchsäure wird als Lactat an den Blutkreislauf abgegeben. Die Leber nimmt Lactat aus dem Blut auf und wandelt es auf dem Wege der Gluconeogenese über Oxalacetat in Glucose zurück. Diese Glucose kann – je nach dem momentanen Status der Energieversorgung – dem Energiespeicher der Leber als Glykogen zugeführt oder an den Blutkreislauf abgegeben werden, um den Skelettmuskel erneut zu versorgen.

Dabei sollte jedoch beachtet werden, dass es sich hier nicht um einen geschlossenen Energie-Kreislauf handelt. In der Gluconeogenese in der Leber muss mehr Energie aufgewendet werden, als in der Glycolyse im Muskel erzeugt wird. Das liegt daran, dass bei der Gluconeogenese die stark endotherme Reaktion] von Pyruvat zu Phosphoenolpyruvat (PEP) energieaufwendig umgangen wird, während die freiwerdende Energie bei der exothermen Reaktion von Fructose-1,6-BP] zu Fructose-6-P bzw. Glucose-6-P zu Glucose nicht genutzt wird. So müssen bei der Gluconeogenese aus Pyruvat für jedes Molekül Glucose 4 ATP, 2 GTP sowie 2 NADH aufgewendet werden. Bei der Glycolyse entstehen jedoch aus einem Molekül Glucose nur 2 ATP sowie 2 NADH.


Anhang

Anmerkungen


Einzelnachweise